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Introduetion

This paper deals with an analysis of some simple detection
experiments in terms of a theory that incorporates two separate
but interdependent processes: an activation process and a de-

¢ision process, The activation process specifies the relation

between. external stimilus events and hypothesized sensory states

of the subject. The decision process specifies the Subject‘s
Qbservablé resjonse in terms of his sensory:state aﬁd'informétioﬁ
acquired during the course of an exﬁerimenta Both processes arer
" dynamic. The activation'pr0cess defines the suﬁject‘s level of
sensitivity to external stimuli, and we postulate fhat sensitivity
may fluctuate (within certain limits) from trial to trial as a
function of past evente. The decisipg process is similarly
@ynamic,‘for.it nmay change from trial to trial as information
accrues.to the Subject. ‘The procesges interact in that the
momentary stafe of one process operates in a reciprocal fashion
to determineuthe state of the other. -As will be indicated- later,
m@st theories of signal detection view the subject's sensitivity
level as fixed {or at most fluctuating. in a strictly random
faghion over time) and account for variations in his performance

to a fixed intensity signal by postulatiﬁg changes inlthe




decision rule. In éontrast, for the present theory changes in
performance to a fixed intensify sigﬁal mey arise in several ways:
(1) manipulating aspects of the experimental situations that affect
the subject’s sensitivity leﬁel bu£ leave the decision process
unchanged, (2) manipulating variables that affect the declsion
process bub leave the sensitivity level unchenged, or (3) manipu-
‘lating‘parameters that_affectlchanges in both processes.

The theqry that we present generates predictions for all .
aspects_of the subject’s response protocol (meaﬁ response pro-
babilities, assoclated variances, sequentilal statistics such
as autocorrelation functions on both responses aﬁd stimuli, and
S50 forth) and thereby rermits a defailed treatment of individual
trial-by-trial data. Some predictions are,parameter free, but
by and ;arge the predictions depend on estimates of parameters
that aescribe_the stimulus situation and the hypothesized
. detection process. Some readers may feel that we have been too
1iberal in_ﬁostulating-parametersj however, for most applications,
restrictions_are appropriate that merkedly reduce the number of _
parameters that;need to be estimated. For example, predictions
regarding recelver operating characteristic curves and certgin
first-order éequential phenomena may require that only two
parameﬁers be-eétimated. In contrast, autocorrelation predictions
in .complex detection experiments may require that as many as six

parameters be estimated.




The type of psychophysical study to be considered is & choice
_experiment for which the experimenter has established, and explained

to the subject a- one-to-one correspondence between the response set

(Al’ Ay, + o e ,Ar)-and:thé_stimuluS‘preséntation set

(Slf_SQ Te e ,Sr); On each’ trial a sfimulus is presented and

the subject attempts to idéntify the stimulus by'making the‘appro~

- priate response. ‘For -excellent reviews of research and theory in

this area see Green (1960), :Li::cklider (1959), or Swets (.;961)-;
.‘Fdr purposes of thiS'paper we shall comgider only experiments

:for which r = 2.° That-is; on each -trial either 5, or S, 1is

presented and the subject is required ‘to make either response

A, or Ay . Also, the__theoretjical development will be restricted

to procedures where the experimenter informs ‘the subject at the

end of each frial which response was correct. These two restric-

‘tions aré not fundamentsl to' the theory, but greatly'simplify

‘the presentation. Later it will be'apgarent that the model can

be extended to multiés%imu;ué_pfoblems and to procedures in which -

_infoxmatioh feedback is manipulated as an experimental variable.

Two types of experimental.prdcédures are to be distinguished
, in-thelanalysis, We define these in terms of the following

examplesé

Yes-No Procedure: 'Sl ig a tone burst in a background of white

i

noise and 52 is the white noise along. On a given-trial either

s, or 52,-is presented and the subject answers yes (A;) or no




(Ay). regarding the, presence of the signal.

Forced-Choice Procedure:. Two temporal lntervals are defined on .

each trial, exactly one of which contains a signal: 1.e., in one
interval a tone burst in a background of white neise is presented,
while in the other interval only the white noise'is:presentea. On -
eaph_tri@l; the. subject.is required to identify the interva} he
believes most likely to have contained the signal. Thus, - .

Si(i =il,_2)_dengtes a trial on which the signal occurred in.

time interval 1 and;_Aj(j =.1, 2) denotes the subject's selec-
tion.of interval Jj . as the. one containing the signal.

In this paper we shall use the identifications given in
‘these examples. -:That is, for the yes-no procedure aSl_ wilkl
always denote signal plus noisé, whereasr_Se_ will denote noise
alone; for the forced-choice procedure Sl will denocte signal

plus noise in the first interval followed by noise alone in the

second interval, and S, indicates noise alone in the first

2
interval and signal plus noise in the second interval. In addition,
the'following notation will be used:
S ?=\Ih¢ Presentation of stimulus -Si on trial n of -
the experiment.
A, = The occurrence -of response Aj on trial n of
the experiment.
- B, ;”Therpccurrence of an information event at the end
;Qf trisl. n tﬁaﬁ.in@igates that stimulus. Si

was Ppresented.




A theoretical result of particular interest in enalyzing detec-

tion data desls with the relation of Pr(4, _|S, ) to
: 1l,n’1,n’ -
Pr(Al}nlSE:n) e fyorjsimpllcity we write

21 Pr(Al)'n{SlJ.n)

e
Yy v
Il
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SE,-ﬁ
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and when the appropriate 1imit exists

lim . = P,
Pion™P1
n =

For the yeSano'p;ocedure Py is the asymptotle probability of a
yes report when the signal is presented (the likelihood of a "hit")
and Ps is the probability of a yes report when noise alone is
presented (the likelihood of a'"false alarm"). In the literature,
plots of the relation of Py to p; are commonly ¢alled ROC

curves, which stands for receiver operating characteristic curves.

It is Important to note that we use the term ROC curve 1In reference
to both the yes-no and forced-choice method. When one déals with
n-interval forced-choice problems, then the ROC curve is & surface
in n-space and predictable from-the theory.

This paper treats-the effects of three classes of variables:
.(;)_thejphysical'parameters of the stimulus presentation set;
(2) the trial-to-trial schedule for presenting stimuli; and,

_(5)_the'class-of-variables such as monetary payoffs and instructions




that are viewed as - influencing the motlvation and set. of the
subject. To .simplify:the discussion, we shall consider.only a

simple probabilistic scheme for presenting stimuli; namely

P8y ) =7 (2)

where v dis constant over'trialso ‘More comp}ex stimulus schedules
can be analyzed; e. g,;.thé étimulus presentétion on trial n
might ‘depend on the response on trial n - k, or on.the stimulus

on frial n - ki » or hoth. However, an analysis of this

simpler schedule will be sufficient to illustrate the basic
concepts and encompasses most. of the experimental literature..

‘Axioms and-Rules -of- Jdentification

The hypothesized sensory state of the subject that results
from-the presentation of an external stimulus is specified in

terms of two sensory patterns. s and s and a set 5%

1 2

of,stimulug_paﬁternsrassociated with background stimulation,
These  stimilus patterns are: theoretical constructs to vwhich.we
will assign certain properties. They are not the receptor neurons
of neurophysiology but-a schematic representation of the physlcal
stimulus, having certain simple and uniform properties. .

On every trial a single pattern 1s sampled: from the back-
ground set S* and simultanecusly one of the sensory patterns

may or may not-be activated. If‘ﬁhe-:s

1 sensory pattern is

activated an 'Al . response will occuri if . s, -Is activated, an..

o

< R




: '.AE Will.occur. ifr neifher sensory pattern is activated the
subject makes the response to which the background pattern is
.conditioned.--Conditioning of elements in .S* mey change from
trial to trial via a siméle learning process.

The likelihood of activating sensory pattern 8y given
stimulus -event _Si on trial n (and thereby insuring a correct
response) is dencted as mi,n . 'The parameter 'mi,n is &
measure of the subject's momentary sensitivity level and may
fluctuate from trial to trial. -waever, the momentary sensitivity
level is bounded between zero and Mi’ and the parameter Mi

. represents the subject's maximum level of sensitivity to a fixed
signal. The parameters Ml- and-Mé' are to be interpreted a8
measures of the physical characteristics of 5, 'gnd 8, ‘and
-are monotonic with signal strength. Further, we assume that
variables such as stimulus presentation schedules, instructions,
nioneta.ry pa;yoffs, and experimental design have no effect on

Ml and M, .

Changes -in sensitivity level occur from trial to trisl and
_depend on prévious events.  Specifically, if the subject tends to
do-well (i.e., emit correct responses) by ignoring the sensory
patterns when they are activated and responding in terms of the . -
background stimuli alone, then he will tend to lower his.level

of sensitivity. If, however, he tends to do poorly by basing

his response solely on. the background cues,,then'he will tend




to raise. the value of - mi;n-_.,:Roughly_spgaking,.we aésnmenthat
fhere Is.a certain cost associated with maintaining a high ievel = é
of sensitivity and view the subject as being predisposed to rédnce'

his sensitivity level whenever possible.  However, the subject's

tendency to lower his sensitivity level is counteracted if.the

redubtion’givés rise to-a significant decrement. in his abilitj

to perform effectively. Thus the activation process can be

described.as.n negative feedback system in which the cost asso-

ciated with maintaining a high level of sensitivity interacts with-

the cost - associated with a decrement in performance so as to

determine -a momentary: level of sensitivity. The parameters that

spgcifyfthe?increménts and decrements in.sensitivity-are ‘poand

& , and we assume that their values may change if the.subject's

motivation or set changes. We return to thisgpoint later.'_The

concept: of a variable level of sensitivity is not new and there is

‘considerable experimentnl evidence at both the behavioral and . ?
physiological level to supnort the idea (e.g., Blackwell, 1955;
‘Guilford, ‘1927; Horworth an&lBulmer,'l956; C&dfield, 1955;.
Vefplénk,WCOllier_and Cotton, 1952; and Wertheimer, 1953).

In addition notiong of this sort have played a role in the specu-.
lations of Gestalt psychologists (e.g.; Kohler, 1947) and more
recently, in theoretical develnpmentn regarding the interplay
. between the reticular system and the association cortex

--(Lindsley, 1958). The important feature of the present: theory
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is the relation postulated between variations in the sensitivity
level and past stimulus-response events.

The axicomg will be formulated verbally;-:it is not difficult
to state them in a mathematically exact form, but for our purposes
this will not be necessary. The axioms fall into three groups:
the_firsﬁ‘groﬁp déals'withiﬁhe‘activation process; the second,
with the decision process; and the last group with variations

in sensitivity.

AActivation Axioms

CAL. E Si -oeceurs on trisl n , then sensory patiern

s, will hesactivated with probability m
. - - N

A2, Exsctly one pattern is sampled from set &% g:r_i every

trial.  Given the set 5% of N pabterns, the probabllity of

sampling & particular element is 1/N s independent of trial '

number and preceding events.

~ Response Axioms

Rl. If sensory pattern s, 1s activated, then the A, .

response will occur. If neither sensory pattern is activated,

then the response to which the sampled pattern from 5% is

conditironeii will 'occuru

" R2. On every trial each pattern in S* 1s conditioned to

either Al or A, . Ifas pattern from .S% is sampled on a

trisl, it becomes conditiohed with probability 6, to the A,

response if Ei' occurs on that trial; if it is already conditioned

to that responge, .1t remains so.

-9 -




Sensitivity Level Axioms

Ll. The parameter Mih specifieé~thefﬂﬁximnmavalue of.

m, - : .- Further
A0 o

12. The weighting function w_ changes from trial to trial
as follows: .

T = AlBraeeyw 1+ (oAl (v + 0] .

(

The function Ahg) denotes . the .proportion of trials from trial

n-£&+1 to trial .n,oen which the information event Ei agreed

with the regponse conditioned,ﬁg‘the:pattern sampled from B*

Tbe digtinctipn.befween yes-nco and forced-choice methods 1s
specified_in:terys‘of the parameters Ml and M2 . To explicate
the:d;stinctiop'@gtween-these two experimental procedures we-
redefine ¥1 and M2 in terms of the more molecuiarrparameters
g and 1 . Consider a limiting condition in which-the subject
is performing at his highesﬁ'level of Qensitivity_Qi.e.,-W 5,1).
Under_these_éoﬁditions, if a signal is presente@ in noisg-we assﬁmg
 that the éubjéét.either detects the signal (with probability 011)1
or is uncertain whéther-fhé:sigﬁal occurred. Similarly, When
noise alone isipresented We assume that.the subject'éither de£eéts.
the aﬁsence of-a.éigqal (with probability 1 ) or_ié uncertain
whether dr ﬁot fhe signal_occur_rede .The three events wil; be

‘denoted‘as foilows: s = detected signal; s = detected omission
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of signal; and.  u = uncertain. For the yes-no method the occurrence

-0f 8 ds-identified with the activation of sensory pattern 8 and

therefore a "yes" response; s with the activation of s, &nd the
~oceurrence of a "no" response; and the event u with the activation

of neither s, nor Bs and consequentlyfthe occurrence of the response

1
conditioned to the element sampled from S%. Hence for the yes-no

procedure

Ml = g

(3)

fi
=

Mo

For the forcéd—choicé pfoceduré'the analysis is similar. Consider
an 'si"trial—-Signal'plus noise in the first interval followed by
hoise alone in the second interval. Ome of the following event
Sequences can oceur:
(1)”’évent s occurs in the First interval and is followed
.by event s in ﬁhe second interval--with pfobability
R
(2) & followed by u --with probability o(1-7)
(3) u followed by s --with probability (l-a)n
(4) u followed by wu --with probability (1-o)(1-1) .
Information transmitted by either outcome 1, 2, or 3 suffices to
idéﬁtify the ‘trial, and therefore the occurence of any one of
~ these outcomes is associated with the activation of sensory pattern
s, and the occurrence of the A. response. If the fourth outcome

1 L

occurs; we assume that neither sensory pattern is éampledugj'
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“Therefore wMi = oy#0 () + (1-0)n and by a similar argument it.

1

éan be shown that M, = Mé e Hencé'for the forced-choice'method'

My =My =0 F - on . ()
In tﬁe&r&, onee ru and .ﬁ have ‘been eétiﬁaﬁed,:say,-forrthg
.§és-no ﬁefhod, the&.cén“be ﬁééd to predict in the.foréedschbicg
procedure:. Iﬁ thisrfegard note that (for fixed values of ¢ Véﬁd_ n)
_the parameter 1= Mg for the forcéd—choice method is alwéys |

greater than or egual to Ml

In the present formalization of the theory cnly events s and

and Mé for the yes-no method.

u  can occur given signal plus noise and only events s andi u o,
g;yeg.noise.alonef Wheniphe modelAﬁas first developed, we permitted
S5 s, and v to qgcurr(wjth different probability distributions)
given either,signal plug noise or nolse alone. prever,-in the
analysis of several sets of data (Carterette and Wymap,_l962¢
_Kinchla,_l9625-Atkipson and Cartgretﬁe, in pfeparation)_estimates
-of the probability of event s given noise and the prdbgbilify of
_E',given signal plus noige were consistently eéual to zero. Hence
for the present discussion‘we.have chosen to let ‘
Pri{s|noise along) = Pr(E]signal plus noise) = O and thereby
simplify the presentation. lﬁ,also_is interesting that.in.the o
ranalysis of the_abofe,data the estimate of n _was very close to.
zero. - In fact, by‘settipg T ;QO the correspondence between
theoretical and observedrvalues was. not much different than When

& separate estimate of the parameter was made. However, even

- 12 -




for small values of 1 the B event plays.an,important role in
accounting for‘second choice data in multi-interval forced-chQice
experiments and for this reason the simplifying assumption of

| n = O was not made. |

‘Asymptotic Response Probabilities and ROC Curves

If we let W denote the proportion of elements in S* con-
.dltioned to an Al 're5ponse at the start of trial n. s then (by
axiloms A2 and Rg) weynay Write the following difference equation:
B 6, o . o |

2 1 1
Vou1 = V(1= (L=7)5 - 7ﬁ—] -

ThlS recursion can be solved by standard methods (see Atkinson and

EStes, l962) to yleld the expliclt formula

Vo= - O¥ - w0 - -%{62(1-7‘) + 0,117

where
= VA
¥ = 55 {5)
. : : : . S 92- .
~and the response blas parameter ﬁ =5 The quantity w denotes
“the lim y and is the asymptotic probability of an Al response
e R

given that an element from = 8% determlnes the subject 8 response.

For most of analyses we shall be concerned with response protocols
‘that may be v1ewed as asymptotic data Hence, in general theoret-'

._:1cal results are presented only for the case in which n..is large

U51ng techniques 51mllar to those employed in Eq 5 and, applying




I

~axiom T2 yields an expression'for 1im W

‘ W ; namely,
n—w .

l1-A+AC

N

W (1))

In the statement of axiom T2 we assume that the amount wn inoreased

where ‘the activation parameter « = % and A

or decreased on a trial depends on A(g) 3 the value of this function
being the proportion of times over the last ¢ +trials on which the
'_subjeet would_heve been correct by ignoring the 'sensory pattern and
responding solely in terms of the background cue. It i=s interesting“
that the.asymptotic expression for w  in Eq. 6dis not a function

off & ; i.es, independenf of the number of trials the subject scans ,:
over, the‘ralue of w depends only on @, B _snd y A Eo’be more -
enact, aﬁ asymptote the random variable associated with the Weighting'
function has an expectation of w independent of £ ; however; the

'_ variance of the distribution does depend on & , being maximumn

when § = l‘ end approaching zero as £ becomes large. Analjéess

of data reported by Carterette and Wyman {1962), and Aﬁkinson and

Carterette (in preparation) yielded estimates of g that were quite

- large. In view of these. empirical results and for reasons of

mathematical 81mplicity we will, in general, assume that € —m o
Later.the effect of & on sequential predictions will be discussed
but, otherwise, the mathematical results presented 1n this paper

will be for the case where the scan range is large.
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Employing our previgus results, and using exioms Al and A2

~we obtain:

py=m + (m) ¥ (72)
Py = (l-my) ¥ (7o)
where m, = limm, .- , and
1 ,n
1 — 0
m, = WM, . (8)

An inspection of Egs. T and 8 indicate that By and Py, are func-
gt;pns gf 'Ml_’ M, ,._a s B ,_and ¥ rn. Of ;ourse ¥ 1s specified.
by the experimenter and therefore, to fit any ROC curve, four param-
eters need to be estimated. However, for most applications restric—
jtionspare appropriate that reduce this number. For example, in a

and 82 stimuli

forced-choice experiment the symmetry between S1

is such to require that &, = 92 {unless the subject has a bias

1
extraneous to the experiment that favors one response over the other)
and hence B =1 . Further, by an earller argument (see Eq. 4} we

1
_the ROC curve depends only on M and o .

require that M, = Mé . Therefore, in a forced-choice procedure

ROC curves. W§ now examine two methods for experimentally
gengrating:BQC curVes. _One procedure is to vary the schedule for
presenting - Sl ~and -32 ;\fqr purposes of the present paper this
inyolves varyingr.y from session to session while holding all other

factors. constant, (Tanner, Swets, and Green, 1956). Another method

- 15 -




for generating ROC:curveé-isfto manipulate instructional variables
and/or payoffs from one experimental session to another while-using
‘the same stimuli-and holding 7  fixed. (Swets, Tanner and Birdsall,
,1955)1 The predictions.fqr each of these cases will bhe examined
-separately.

Congider first the case in which ¥ is permitted to vary While.
all other :actors remain unchanged. Undexr these conditions it is
‘assumed.éhét the. instructions and ﬁajoffs specify fixed wvalues. of
the_fegponée bias paraﬁeter. B and the activation parameﬁer a .
Also Ml and :Mé' are fiot affected by the value of -7‘ for, in theory,
they deﬁéﬁd_oniy:on7the'physical characteristics of the stimulus
'preééﬁﬁa£i6n‘sét.: Therefore, for a given experimental situation
M, , M, , Gand B ‘are fixed, and variations in 'p_l' and p, induced
.by;maﬁipulating-fhe_schedule fof;pféseﬂiing jSl and VSé must be
_accounted for stfiétly hijariéfibns-in Y . -

| Ir wé'héld Mi-,'wb , a, and B uconstant and Vafy e béty@eﬁ
0O &nd 1 :(the permissible range); then the ROC curve defined by
,Eg.‘T is in genéfai,‘a.moﬁotone iﬁCréasing furction that.ofigiﬂétes_
at point (0, 0) and terminates at point (1, 1). However, it is
necessary to be more precise dnd distinguish three cases:-

'f(l)'.If: 5-¥'O and W >0, 'thén.asymptoticallyltha subject -

| pefforﬁs'ét ﬁis“méximum levél of sensiti§ity:independenf‘
of other factors, and the ROC curve is given-by_ﬁhe_iinear

-.fuhctipnf'
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i - (9)
Pl:f‘l—Me Po T %y _

{2y If >0 and U

0, then asymptotically the subject
performs at his minimum level of sensitivity, .and the ROC

“curve is simply

(}).-For,the general case where i and . % are both greater than
zero, the ROC curve isg a non=iinear monotone: jncreasing
function bounded between Egq. 9 and Eg. 10 that originates
‘at (0, 0) and terminates at (1, 1).

Figure 1 gives several ROC curves for both yes-no and forced-
choice procedures when £ =1, ¢ = .7, and n =5 or .1 . The
parameter on each set Qf curves is the value of @ . Buccessive
points on an individual curve were swept out by letting 7 véry
from O to 1 . For the general case, O is & ratio of two
non-zero probabilities and hence takes any value greater than zero.
For & close to zero (low sensitivity level) the ROC curve tends
toward the line Py = Py 5 as ¢ becomes large the curve. approaches
the line given by Eg. 9. ‘Further, as indicated in Figure 1, when
@ and £ are the same in both the yes-no and the forced-choice
procedure, then (by the conditions of Egs.3 and 4) the theory prewr
dicts that the:ROC curve generated by the forced-choice group will

be above the ROC curve for the yes-no group.
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Tt also can be shown that thg.ROC“curve defined by varying ¥
is either symmetric.aboutﬂthe mﬁiﬁ-ﬁiagonéi_from point (O , 1) to
(l,:o},_gkeweﬁ right, or skewed left. For symmetry we require
Ml = ME: and B ?,l ;‘othefwise_;he curve may be skewed right or
left. DNote that the conditions that specify a;gymmetric:ROC curve
-hpldrin“the Foreed-cholce experiment; they may or may not hold for
,differehﬁ yes-no eXperiments. |

Another method for generating ROC curves is to fix both -y and
the signal intensity, and manipulate instructions and/or payoffs
from one experimental session to another. Under these conditions
.Ml and .Mé would be constant over sessions but we mlght assume
that the response parameter and the activation parameter vary. Thus
the ROC curve produced by .changing instruetions or payoffs’ would
theoretically be explained by variations in O and/or $ given
fixed wvalues of'“Ml-,, M, , and: ¥ . In the discussion of this
method we let. 3 =-1/2 5 .this condition simplifies the mathematics™ -
and. includes most Qf-the-experimenﬁal work. swe'éxamineffirst the -
cases:in which only & :or B 1s permitted to véry_and:then-the
case. in which they vary concomitantly.

If we hold the bias parameter B constant and let & vary
from O -to :» -then the ROC curve is a straight line segment

"~ between the peint.

y H‘M - I'Mi'i o __l-Mé
1M T 0 P27IFE
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PT(A1'fSJ) '

YES~NO METHOD

"o

o=.7
n=.5

'YES—NO METHOD
ao=7
n= N

Pr(A,]S,)

Figure 1.

FORCED—CHOICE METHOD
o=.T

n=.5

i i T 1 L] 1 I

2 4 6 8 10
~ Pr(A,lS)

FORCED—CHOICE METHOD
o=.7

'ri=.l

' .pr(AIISZ) o

ROC curves generated by manipulating the presentation
schedule of stimulus events.







and the polnt..

s -t
Py " Tag P51

That is, a8 the'activation parameter varies (and all other parameters

are fixed) we move along the function

M M
E 1 L+ L

P = - W B o, + e Bl . (11)

Such g prediction readily can be realized experimentally. For the
forced-choice method £  1s fixed and we could manipulate & by
varying the amount of payoff for a correct response from one experi-
mental session to another. Then, the ROC curve generated over experi-
mental sesgions would he specified by Eq. li. Such an exXperiment has
been conducted by Blackwell (1953) and this iz precisely the type

of effect observed.

‘To  he sure,-the,ROC‘functidn given by Eq. 11 is rather different
from the typical curve that one thinks of with regard to signal
detection... However, thére is neo deubt that such functions can be
generated experimentally by symmetrically manipulating motivation
yariablesain the forced-choice problem. In this regard, it should
be noted.that the ROC curve has been referred to in the: literature
as an equi-sensitivity curve (Luce,-l961)° For theories of signal .
detection that have static concepts of the activation process, such
a term is appropriate because all points on the function represent

egqually.sensitive activation levels. However, from our viewpoint
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the term equi-sensitive does not coniote the .correct meaning, for,
we admit the possibility of generating an ROC curve via variations
in_sepsitivity, -Specifically;_in terﬁs of the present theory, ROC
”cufves mgy arise iﬁ the,folléwing_wgys: (l) experimentally manipu-
lating parameters that affect the éctivation pfocess but leave the
decision process ﬁnchanged (efg;, Eq. 11); (2) manipulating param-
eﬁeré that affect the decision.process buf leave the activation
process unchanged“(ebg35 Eg. 12}; or (3) manipulating parameters
that affect éhanges-in_both the ‘activation and decision'proCeéses
(e.g., the case in which 7 varies while all other parameters are
fixed). |

If we hold O fixed and let B vary (for M; fixed and

¥ =-l/2)5,then‘the ROC curve is given by thé function

1+~ MI : Ml

P TTvae-W 2 Tva (12)

We know of no experimental results that relate to this prediction. .
© Finally, in a yes-np experimenﬁ-it seems reasonable to assume
that both & and B may vary_simultaneously as instructions
and/or payoff change. To illustrate the type of effect that can
be obtained consider the case in which. Q= f (B)  such that‘fhe
function £ is strictly monotone“inqreasingzand £ (0) =0 .
Under thesé conditions if B varies:betwéen 0O and o |, tﬁen 8

convex ROC curve i1s traced out from point (pl =1, py= l_k_Mé)- g
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0 point _(;pl = 0, p, = 0) thatis bounded between Egs. 9 and 10.
Thé dégree.df convexity -and the symmetry. of the ROC-curve will depend
on the function £ . fIn-fhis regard, it is inté:eéting to view the
estimate of £ for a given get of data as a device for.scéling the
effects of instructions and payoffs. |

_In ﬁérmﬁqu.the ahove discussion, it should be cbvious that
Virtugllyrany ROC_qurvelcgn be fitted by_selecting appropriate
parametér“values._ Thus, within the framework of the present theory,
the ability of the model to £it ROC data is a rather trivial test.
iy isiforqthis_reason thgt we now turn'%o_more detailed predictions
regarding the fine structﬁrg of.signal detection data.

Sequential Predictions

It has. long been recognized that rather complex frial-to-trial
-dependencies are involved in most psychophysical data. Some par-
“ticularly striking effects have been reported by Carterette and
Wyman {(1962), Howarth and Bulmer (1956) and Verplank, Collier and
:Cotton (1952); theseiexperimenters have demonstrated that detection
rates {even for sophisticated subjects) may increase or decrease
depending on the immediately prior sequence of stimulus-response
eveﬁts. In this section we ﬁresent some sequential predictions for
signal detection studies, having selected those quantities that are
particularly useful in making estimates of parameters. The reader
is referred to Suppes and Atkinson (19603 Ch. 2) fer a discussion of

appropriate estimation procedures.
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" We shall examine predictions regarding the influence of stimulus
. and response events on triel n .as they affect the response on

trial n +1 °. Specifically

Pr(dy nalSi ety 8k, 1)

where.i, Jj, k=1, 2 . _Explicit.expressions for theselquantities
can be derived from the aﬁcicms° 'The actual derivations are quite
lengthy and will not be presented here; the reader interested in
the:mathematical‘techniques involved should cqnsult‘Apkinson and
 Estes (1962). Also, for purposés of this_paper, the analysis of

‘sequentisl effects will be confined to asymptotic statistics; To

simplify notatlon the quantity

lim Pr(A 18, A, 8 _ _
Will be written as Pr(AllSiAjSk) . ~The expressions for these -

probabilities are as followss
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(m-1)p, ¥+ (1-¥)m [0, + (1:6,)m ]

: "Pr(AlISlAlSl) =+ T (13a)
s Py
(N-1)p,  (1-9)(@-m)[6, +(1-8))m ] |
Pr(A)[8,8,8)) = —5— + W(I-p,) (13b)
(N-1)p v(l-m,)[6,m, + 1-6,]
Pr(a {8,4,8,) = —; L, sz - . (13¢)
L (F-1)p)  ¥my[6pmy + 1-6,] + (1-¥)m;
_?r(ﬁfl_l S;Azse) == ~ W(1-p,) ‘ (134)
(8-1)p, ¥(1-m) + (1-¥)m 6 (1-m,)

' Pr.(Al.[_saAlsl) = — 2 ¢ m2 : Nplml 172 (13e)
. (N-1)p, - (1-¥){(1-m;)6.(1-m,) oy
Prlhy[8,858,) =~ + iy .

| (v-1)p, W(1-m)(1-6,)(1-m)
Pr(A,|8,A,8,) = — 2y i ivp; e - (13g)
' (8-1)p, ym,(1-6,)(1-m,)
Pr(A) [8,858,) = — S 2 N(i_pa)mg (13h)
- To obtain Pr(AE‘SiAJSk) one need only ﬁote that
Pr(Al[ SiAj'Sk-) ‘-i-'_.’E_’r_(A2|. siAjsk) =1 . The expressions in Eq. 13

arerrather-formidable looking, but numerical predictions can be

easily calculated once values for the parameters have been obtained.
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Purthermore, independently of the parameter values, certain relations
among the sequentialmprobabilitiesrcanaberspecified. For example, . it
can be easily shown that Pr(AllsiAlSi)-25Pr(AlISiAESi)‘Or‘that

(A |S A,S ) > Pr( A ]S A, 82) for 1 =.1, 2 and for any values Of
1 2 and Mé . .

To indicate the nature of these predictions we shall examine

'}‘GM

some data from two Subjects.run-ip a forced=choicé auditory experi-
ment. Two temporal intervals were defined on each trial by the 6nset
and offset of two lights. A band-limited Gaussian. noise {the magking
 stimilus) was presenféoﬁtinuaméljfthroughout the experimentél seééion
and on every trial cne of the two temporal intervals contaimned a
fixed intensity, l,OOO cps tone, - The subject pressed one button if
he believed the signal was in the first interval or pressed a second
j button if he believed.the_signal was in the second interval. The
experimental proceaﬁre is desﬁribed in detail in Atkiﬁsdn and
Carterette (in preparation); that paper deals with an analysis of
forced-choice and yes-no'daté frqm-six subjects, each run for 350
trials per day for 30 days. |

The data we present here is not to bé regarded as a test of th¢
tl’uac»rfy,n but only to illustfate soﬁe of the ﬁrédiétiohs, Tablell
presents the cbserved values for pl s Pp and Pr(Alls A 8 ) The
value of y was set at 1/2 in the. experlment and, since a forced—
choice mPthod was used, we assume that B 1 .(i €.y 6, = 6, = é);

1 2
Given that B8 =1 and y = 1/2 we have, via Eg. 5, that ¢ 1/2 .
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Table T

Predicted and CObserved Response Probabilities

at Asymptote

.Observed Predicted
'Pr(All'I‘E) ».28‘ : .27
. Pr(.AI'[TlAlTl) .80 - .78
Pr.(_-All T,.1A2T1) .76 .75
Pr(A; | TIATS) T3 71
Pr(A;|T,AST,) 6T .68
Pr(A, | TAT,) .30 : 20
Pr(a;|T,AT) .32 .29
Pr(A;|T,4,T,) .26 .25
Pr(A;|T,A,T,) .22 .22







Knowing V¥ and the observed value. of Py » Ba. 72 may be used to
obtain an estimate of - m ; onemely m +r(l-m1) 1/2 = .T% or
,ﬁl-= 46 . Further, for the forced-choice procedure Ml =-M2 and
‘therefore, by Eq. B,,it’followérthat m =m, =m . Using the
_dbove. estimate of m we predict by E¢. (b that Py = 27 which
is quite close to the observed value of .28 .

- 'In order to compute predictions. for the sequential statistics
.in Table 'l vélues-for ‘0 and N are required in addition to the
estimate of  m '}'uSeveral methods may be used to estimate 8 and

N but, for simplicity, we apply a least sguares technlque. Specif-

ically, for m = .46 , the following function is defined:

T : . | ,
.SIB’N)~= % -z VPr(AlISiAjgk)."Pr(AllSiAjS;§
. 22 .

‘where -%r (°j denpﬁesmthe obgerved values given in Table 1. Ap-
-plying the méﬁhod ofrleast squares, estimates of 6 and N are
»qbﬁained by‘éelecting-yalues for thesg-parameters that minimize
thgifunctign s(e;ﬁ) .

| _Uéipg_apﬁropriate numerical. technigues, the following estimates
ﬁe;g obtaiﬁed: G % 62 , N = 3.85 . The predictions corresponding
torfheée parametef va;ues are presented in Table 1. TWhen oné con=-
siders'fhat only three of the possible eight degrees of freedom
fepresented in theltable have been utilized in estimating parameters,
the cérrespondence_between thebretical and observed quantities is

guite good. The fact-that‘our estimation procedure yields a
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non-integral value of - N _mgy_suggest that N varies somewhat from
time-to‘time}‘or-it‘may réfleqt sqmeicontamination=of:the data by
~sources cf:experimental error not represented in the model.  The
reader interested in other applications. of .this model 0 sequential
date should. see Atkinson (1962).
:Discussion

-In gome respects the theory proposed in-this paper is.similar
to various applicationS'of.statistiCal'decision theory to psycho-
physical phencmena (Swets, Tanner and Birdsell, -1961; Tanner and
Bwetsy; 1954).. The decision theory approach rejects the conventional
notion of a threshold and: argues for the concept of a criterion
range Of acceptance. They assume that on each trial the reaction
of the sensorynéyStem‘fo én'eXterﬁal‘Stimulus ran be characterized
by a number (a likelihood ratio) and the subject's response: depends
on Whether or not the number falls‘in the crlterlon range. The
process rs not determlnlstlc, forrrepeated presentatlons of a
'stlmulus do‘not generate the game number but rather a dlstrlbutlon
of mumbers (1 €., to a single presentatlon of the stlmulus -8, number
(is randomly drawn from the dlstrlbution) The positlon of the
fcr;terlon (the operatlng level} is assumed to be under_the control
of ﬁhe:obsérrer and to vary as a-funétion of ésychqloéical varlébles
that 1nfluence motlvation and set | Spec1f1cally, the subJect flxes
-the opératiﬁg level in terms of & pricri probabllltles of stlmuli and

the costs assoc1ated w1th_the various choices 1n_such,a,way as to
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maximize.his_expected utility. Translated into the language used in
this paper; the activation process Is represented by the random
sémpling‘of a number from & -distribution associasted with the stimulus;
‘and the declislon process refers to the.selection, by the subject, of
an operating level or criterion.

A principal-distinction beiween our approach-and signal detec-
tion theory.ls wlth regard to the activation process. In our theory
_the sensitivity level of the activation process may vary {(within
.8 given range) from trial to trial as a function of the preceding
evéntsf.-ln contrast, signal detection. theory conceptualizes the
.activation process as static, for the parametefs that describe the
responge :0f the sensory system to an externsl stimulus are constant
and do not depend-on instructions, stimulus schedules, payoffs or
other variables that might influence set or motivationm.

- Another digtinetion between our approach and signal detecta-
‘bility theory is with regard to the decision process. Both theories
permit variations in the decislon rule as a function of various in--
dgpendent variables but in quite  different ways. For signal detec-
tion theory the subject selects g criterion in terms of certain
game-theoretic eonsiderations. that take into account a priori prob-
_abilities-of_stimuli'and the costs associated with the various
choices. -Once-the eriterion has been selected for a given experi-
méntal~condition it is assumed to be relatively fixed, and conge-

quently there is no possibility for predicking trial-by-trial -
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seguentinl effects. .In. contrast, for .the present theory, the deci-
sion process=cﬁaﬁggsZfrom~trial to - trial as a function of the type
-.of information that accrues to the subject.

In discussing the decision rule it 1s important to realize that
we have placed a heavy emphasis on a learning process assoclated
with - stimuli extraneous to the signal source (i.e.,.background cues ).
~This learning proQESS”plays a central role in determining the values
of Py and Py a8 a function of various independent variables and
provides. one mearis of accounting for sequential effects:in,péycho~
physical data. It should be emphasized that the sequential results
predicted by Eg. 15 are due entirely to trial-to-trial changes.din ..
‘the conditioning of stimuli in the background set % ..  Another
source of sequential variability can arise from trial-to-trial

Ffluctuations in : m, .
- i,n

‘When the scan range,. & , is large

these effects are negligible at asympbote; however; for small values

of -E. they can be quite Important. As indicated earlier; we have

obtained good accounts of sequential'éffécts for several sets of

‘datazby_assuming,that the scan range is large. ~Further, when -

£ = o the mathematical analysis is simplified. ‘It is for these

reasong that we have ‘been willing to begin by making this assumption,
Without actually estimating the value of: £ .one can obtain .-

various crude,'bui.easily‘galculated,.measures.of trial-to-trial .

fluctuations=in-sensitivity'(as opposed to the long term changes -

_in sensitivity level described by Eq.6). .As an example, let cy
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an&-an'-dethe-correct (Sl_— Al'or 52 -,AE).and‘incorrect
{ﬁl,ﬂ‘Ag or -8, —.Al),responses on trial n , respectively. Then
-in-a forced-choice experiment in which .7 =.1/2 , the theory pre-

“@icts that

P?Gﬁnfllcﬁ)_S'Pr(cn*llﬁﬁ) (1)

Wifh.edualit#-obtaining_whén E — o .é/ If over an extended series
of't:ials estimates of these two probabilities are about equal, then

" ome can assume that SYStematiéftrial-£o~trial,fluctuations in sensi-
fivity lével are negligible,' JIf the difference is significant, then
;it will be nécéssary;toutﬁke‘ihto accdunt not Only-iongfterm dhanges
in gensitiﬁity_lével but also the more local effects. In this régard,
: it should be pointed out that any theory of signal detection that
.postulatES-a static activation process, has as a consequence the

prediction that Pr(Cn+l|Gn) = Pr(Cn+l|Cn),1n a forced-choice experi-

ment with 7 = 1/2 ; this result holds for both & eorrect-information
prdcedure and a no~information proecedure.

Our presentation of the theory_has‘deélt with exﬁerimental
‘ situation$ in whidh_thé;subject is given correct information on each

trial regarding:therappropriate response; di.e.,
Pr(E) 18 ) = Pr(E, s

s ) =1 . Tt is obvious that the axioms,
o, . _

2,n

_és_stated,.are directly applicable to .problems in which the éxperir
menter.may give false information on some trials. 'ﬁéfshall not go

Cintdfthe predictions for this type of experiment except to say that
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the theory glves.a goodiaccount,gat least at the qualitative level, .of
the findings reported by Carterette.and Wyman (1962) and Suppes and
Krasne (1960) on detection problems in which incorrect information
was manipulated as an experimental variable.

‘Throughout this paper, we have considered psychophysical methods in
Which.tﬁe subject is given inférmation'on'eaéﬁ-trial.and have not dealt
with the no-information case. ~Ugd¢r conditions of no igfprﬁatipn certain
hchanges nged tp_be maié in agioms A% and L2 . A discussion of this.
version of the theory is _given_in' Atkinson (1962) and Atkinson and Estes
L(;962)Iaqd applied_tq somg forced-cholce visual deteqticn_data_infolviﬁg
no information feedback;uthg_detailgd_predictipns_for both asymptotic
_response‘proportions and firstgérder_sequentiél statistics are_gxcel—
lént, However,_the mgjor difficulty with the no—information condition
As that it makes the mathematiqal predictions-léss managable and increases
wthe sampling error associated with parameter estimates. Thus, within
. the present theoretical_f;aﬁework the study of the no-information éase
warrants only_limited'investigation until the. less compiicated cases
have.beeqhadequatexy"explpyedo

 There are a number of speclal toples that have not been discussed.
The following are of particular interest: the effect of.blauk trials in
a_forceqfchg;ce pr@cédure; extension of the mbdel ﬁo account fo; choice-
time measu;es;'and extgnsign of the_model.to muiti-inﬁerya;.forcedrchoice
experiments where §ecgnd chpices are permitted. These problems.éan.be
‘fgrmuigteéwinJa naturq; way_within-the_frameworkJof_theitheqry_agq_will

e treated ﬁn,laterhb&pers,
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"BUMMARY

In~this paper we present an analysig of.both yes-no and forced-
choice experiments in terms of & two-process model. -One process
describes systematic changes that may occur over time in the subject's
:sensitivity level to external stimuli; the other process specifies
changes -in the subjéct‘s decision rule as information accrues to
‘him. From the theory one can derive predictions regarding both
gross statistics like receiver-operating-characteristic curves and
‘detailed sequential statistics like autocorrelations based on. pre-
vieous -stimulus-response events.

Most theories of signal detection assume that the subject's
decision rule changes as & functlon of instructions, payoffs, stimu-
-lus presentation‘schedules,hand other experimental wvariables, ‘but to
our knowledge the present paper is the first to examine the -implica-
~tions of postulating systematic mon-random changes in. sensitivity.
Undoubtedly the detailed features of thé axioms describing changes
in ‘sensitivity are going ﬁorneed much revision to provide a.broad
base for interpreting psychophysical phencmena. Nevertheless, it
‘seems clear that by assuming a variable sensitivity level one can
provide a highly parsimonious account of a wide array of phencmens.
No suggestions have been offered regarding the mechanism that might
account for changes in sensitivity (e.g., orienting respoﬁses,
peripheral changes within the sensory system, or events presumed to
occur at higher centers) and future exploration of the'qoncept may
féﬁuire_such-specificity;'
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Another unique aspect of the present development is its emphasis
~on. sequential phenomena. These effects caﬁ-be;easily‘estimated in
most experiments and represent a source -of information about detec-
“tion behavior that cannot be dupli;ated by an analysis: of gross
statistics like the proportion of hits or false alarms. - Within
the present theory, sequential effects are accounted for in terms -
of trial-by-trial fluctuations in both the decision rule and the
Sensitivity level. Predictions regerding seguential phenomena play
a crucial role in evaluating the .theory. In the past, most investi-
gators eilther have ignored these sequential effects or treated them
ag.experimental-artifacﬁs,to_be minimized by counterbalancing; trial
-gpacing, .or by theluselof_tﬁained subjééts.

. ‘Much research is needed -to test the general class of models
-suggested by the thecory. However, in.our opinion, there is enough.
~evidence:already available to suggest that the concept of a variable
sensitivity level will be.a.necesSary ingredient of a .comprehensive,
theory of detection behavior. Also, it is hoped that the present.
paper has.emphasized the importance of examining trialeby;trial;-.‘
sequential phencmena as.a source -of information about the. perceptual

Process.
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‘. FOOTNOTES

fThefidéas preSented.inTthis paper -have been much influenced

-by :lengthy .discussions with R. A. Kinchla of Ames Research

u_xﬂgqte;;ﬁ'$he-research wasjsupported by the National Institute

of Health under .Contrdet M-5184.

- iIn formulating a ﬁodel:thatfalso treated choice time and:
1:confidencevratings;it.wbuldrbe natural to distinguish be--

_tween outcomes l to'3Qm'HoWever,ffor,anzanalysisjof response

selection,. such a distinetion -is not necessary. Also, note

that the assigmment of provabilities to the four ocutcomes:

Cassumes no time-order effect; i.e., no interaction between

events in ope'temyoral interval.andnthe next. For a glven

experimental situation, the precision of the comparison

‘between ﬁhefforced-choice and the yes-no method will depend

on the accuracy of this assﬁmption,

It should be emphasized that the prediction in Eq,-lh does

‘not depend on the value of B but only on the fact that

M) =M, and ;¥ =1/2 .
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